philips eco friendly microbial home
nov 02, 2011
philips eco friendly microbial home


the ‘microbial home’ concept by philips design

the ‘microbial home’ by philips design is a concept home design that adopts a systemic approach to domestic activity,
connecting machines into a cyclical system of input and output that minimizes waste. as the designers explain,
we view the home as a biological machine to filter, process, and recycle what we conventionally think of as waste.’
from domestic beekeeping (‘urban beehive’) to gardens that decompose plastic waste (the ‘paternoster’),
view more information about each of the component prototype devices below.

the ‘microbial home’ was on exhibition at the piet hein eek gallery during dutch design week 2011 in eindhoven, the netherlands.


the ‘methane bio-digester’ kitchen island generates energy for use in cooking and heating

methane bio-digester

the ‘bio-digester’ is a kitchen island that includes a chopping surface with waste grinder and gas cooking range.
in the device, ‘bio-gas’ is produced by developing gas-generating bacteria cultures that live off of organic waste.
the bacterias’ gas is collected and burnt, for use in the built-in cooking range and lights or sent through to heat water pipes
and be used in other components of the ‘microbial home’.


view of cutting surface


detail on cooking range
image © designboom


‘larder’ evaporative cooler dining room table

larder

‘larder’ is a dining room table that doubles as a food storage system and evaporative cooler– similar to a kind of natural
refrigerator. the center of the table is composed of inset terra cotta boxes, whose outer surface is warmed by the hot water pipes
from the methane ‘bio-digester’. the compartments vary in wall thickness and volume, providing spaces of diverse temperatures
for storing different kinds of produce.


detail on terra cotta cooling compartments
image © designboom


the ‘paternoster’ mushroom garden decomposes plastic waste

paternoster

the ‘paternoster’ is a ‘plastic waste up-cycler’ that uses mycelium fungus to break down plastic packages and bags.
enzymes within the fungus can decompose the plastic, utilizing the material for food and thus producing edible mushrooms
(as long as the inks on the plastic do not contain toxic materials). mushroom cultures are grown in glass and inserted into
a holster wheel within the device. each week, plastic grounds are mixed with the mycelium. the front surface of ‘paternoster’
can be opened to reveal all of the machine’s inner workings for educational purposes.


detail on inner gear
image © designboom


‘urban beehive’

urban beehive

the ‘urban beehive’ is designed to facilitate domestic beekeeping. installed into an exterior wall, one side of the device offers
an integrated flowerpot below an entry tunnel for the bees. as the creatures fly into the main hive, they find a preexisting
honeycomb structure on which they can build their wax cells. the glass shell permits the entry of orange light, which bees
use for sight, while rendering visible the interior structure and work of the bees.


the exterior side of the device
image © designboom


detail on hive
image © designboom


‘bio-light’
image © designboom

bio-light

‘bio-lights’ use either bioluminescent bacteria, fed with methane and composted material from the ‘methane bio-digester’,
or fluorescent proteins to generate light for home. the lamp structure is a wall of glass cells suspended in a hung or freestanding
steel frame, filled with biological cells. the low-intensity light generated requires no electricity and might be adapted to urban,
highway, and navigational use in addition to domestic.


the ‘filtering squatting toilet’

filtering squatting toilet

the ‘filtering squatting toilet’ requires no external energy, saving water by using a special flush mechanism.
the device filters excrement to the ‘methane bio-digester’ for use as energy.

research suggests that squatting toilets provide health benefits such as decreased risk of colorectal cancers,
in comparison to sitting toilets, and in the philips design, a built-in handrail improves comfort and balance.


diagram of the integrated ‘microbial home’ system
diagram © philips; photograph © designboom

comments policy
LOG IN VIA
login with designboom
designboom's comment policy guidelines
generally speaking, if we publish something, it's because we're genuinely interested in the subject. we hope you'll share this interest and if you know even more about it, please share! our goal in the discussion threads is to have good conversation and we prefer constructive opinions. we and our readers have fun with entertaining ones. designboom welcomes alerts about typos, incorrect names, and the like.
the correction is at the discretion of the post editor and may not happen immediately.

what if you disagree with what we or another commenter has to say?
let's hear it! but please understand that offensive, inappropriate, or just plain annoying comments may be deleted or shortened.

- please do not make racist, sexist, anti-semitic, homophobic or otherwise offensive comments.
- please don't personally insult the writers or your fellow commenters.
- please avoid using offensive words, replacing a few letters with asterisks is not a valid workaround.
- please don't include your website or e-mail address in your comments for the purpose of self-promotion.
- please respect jury verdicts and do not discuss offensively on the competition results
(there is only one fist prize, and designboom usually asks renown professionals to help us to promote talent.
in addition to the awarded designs, we do feel that almost all deserve our attention, that is why we publish
the best 100-200 entries too.)

a link is allowed in comments as long as they add value in the form of information, images, humor, etc. (links to the front page of your personal blog or website are not okay). unwelcome links (to commercial products or services of others, offensive material etc. ) will be redacted. and, ... yes, spam gets banned. no, we do not post fake comments.

product library